Julia Matsieva e ECS 235A e Fall 2012

UC Davis

December 6, 2012



AnDarwin project identifies plagiarized Android applications by

constructing a program dependency graph for each application
converting connected components of each PDG into vectors

using Locality Sensitive Hashing algorithm to identify clusters
of similar vectors



Advantages of this approach

avoid solving maximum common subgraph isomorphism
problem on PDG's, which is known to be NP-hard

avoid pairwise comparisons between all n Android programs in
the data set, which would require O(n?) comparisons



A program dependency graph G is constructed by

creating a node for each statement s in the program
for each pair of statements s, t creating edge (s, t) if there is
a variable in t whose value depends on statement s

Thus, PDG's are resistant to code reordering, variable renaming
and other simple obfuscation techniques.



AnDarwin constructs d-dimensional PDG vector v by
classifying program statements into d types, i.e., conditionals,
binary operations, etc.
selecting an ordering on the types of statements in the
program
setting the it" component of v to be the number of
statements of type / found in the PDG



AnDarwin constructs d-dimensional PDG vector v by
classifying program statements into d types, i.e., conditionals,
binary operations, etc.
selecting an ordering on the types of statements in the
program
setting the it" component of v to be the number of
statements of type / found in the PDG

Unfortunately PDG vectors only encode node count and do not
contain any structural information about the graph



Instr #9
Type #11
Instr #10
Type #0

Instr #8
Type #11
Instr #22
Type #11

Instr #24
Type #9

Instr #13
Type #0

Instr #15
Type #9

Instr #18
Type #7

Instr #19
Type #7
Instr #28
Type #11

Instr #29
Type #6
Instr #30
Type #12

PARAM_CALLEE

Instr #42

Instr #1
Type #11

Instr #38
Type #17

Instr #37
Type #11

Instr #6
Type #0

Type #0

Instr #43
Type #0



Instr #8
Type #11

Instr #15
Type #9

Instr #2
Type #9

Instr #37
Type #11

Instr
Type

#39
#12



Construct a 2d-dimensional PDG vector v by
classifying program statements into d types, i.e., conditionals,
binary operations
selecting an ordering on the types of statements in the
program
setting the it" component of v to be the number of
statements of type / found in the PDG



Construct a 2d-dimensional PDG vector v by
classifying program statements into d types, i.e., conditionals,
binary operations

selecting an ordering on the types of statements in the
program

setting the it" component of v to be the number of
statements of type / found in the PDG

setting the (d + i)t component of v to be the
max out-degree of the statements of type i



Advantages



Recording max out-degree

capture some measure of the importance of the most relevant
statement to the rest of the program



Recording max out-degree

capture some measure of the importance of the most relevant
statement to the rest of the program

adds distance between some false positives;
does not create any false negatives



Recording max out-degree

capture some measure of the importance of the most relevant
statement to the rest of the program

adds distance between some false positives;
does not create any false negatives

harder to tamper with than in-degree, since bogus data
members can be invented to depend on other statements



Recording max out-degree

capture some measure of the importance of the most relevant
statement to the rest of the program

adds distance between some false positives;
does not create any false negatives

harder to tamper with than in-degree, since bogus data
members can be invented to depend on other statements

not sensitive to small changes in less-important statements



Recording max out-degree

capture some measure of the importance of the most relevant
statement to the rest of the program

adds distance between some false positives;
does not create any false negatives

harder to tamper with than in-degree, since bogus data
members can be invented to depend on other statements

not sensitive to small changes in less-important statements

decreases distance between vectors created from programs
with different node counts but similar structure



The LSH algorithm used by AnDarwin has complexity

0(d > |glPloglgl)

geiG

where d is vector dimension.

Therefore, increasing the vector dimension to 2d only increases the
runtime by a constant factor.



some additional computation time for converting PDG's to
vectors

since we do not have a characterization for the types of
graphs induced by the set of Android applications, this
method may potentially create many new false positives



Other Ideas/Future work



implementation and testing



implementation and testing

distorting Euclidean space to account for ease of adding
certain types of statements

(for example, it may be easier to add extra add statements to
a program but not extra conditionals)



implementation and testing

distorting Euclidean space to account for ease of adding
certain types of statements

(for example, it may be easier to add extra add statements to
a program but not extra conditionals)

including average out-degree in the vector might also be
contain useful structural information about the graph



implementation and testing

distorting Euclidean space to account for ease of adding
certain types of statements

(for example, it may be easier to add extra add statements to
a program but not extra conditionals)

including average out-degree in the vector might also be
contain useful structural information about the graph

implement an automatic method for characterizing false
positives



Questions?




